Machine Learning and artificial intelligence algorithms in the detection of cyber-attack patterns [Algoritmos de Machine Learning e inteligencia artificial en la detección de patrones de ciberataques]
DOI:
https://doi.org/10.62574/rmpi.v5iTecnologia.276Keywords:
choice of technology, technology assessment, computer applicationsAbstract
This article aims to evaluate the performance of various machine learning algorithms in the detection of cyber-attacks in the mitigation of threats within networks and computer systems. The methodology was experimental validation and the execution was carried out using the V-cycle computing method. The effectiveness of Machine Learning (ML) algorithms in the detection and mitigation of cyber-attacks was demonstrated, highlighting their ability to identify malicious patterns in network traffic. The results obtained validate the applicability of models such as Support Vector Machines (SVM) and Naive Bayes (NB), which have demonstrated significant performance in threat classification, with SVM being more efficient in detecting complex attacks and NB faster and with lower computational cost. In practical terms, implementing these models in enterprise and government environments could significantly improve cyberattack response capabilities.
Downloads
References
Aljamal, I., Tekeoglu, A., Bekirog, K., & Sengupta, S. (2019). Hybrid intrusion detection system using machine learning techniques in cloud computing environments. IEEE Computer Society. https://ieeexplore.ieee.org/document/8886794
Cabanillas, H. A., & Nizama, J. J. (2019). Análisis de algoritmos de encriptación de datos de texto, una revisión de la literatura científica [Analysis of text data encryption algorithms - a review of the scientific literature]. [Trabajo de investigación, Universidad Privada del Norte]. Repositorio de la Universidad Privada del Norte. https://hdl.handle.net/11537/31391
Castellanos-Rojas, B. S., Cortés-Rodríguez, C. U., Espitia-Osorio, D. J., & Garzón-Bello, Y. T. (2020). Redes neuronales artificiales y estado del arte aplicado en la ciberseguridad [Redes neuronales artificiales y estado del arte aplicado en la ciberseguridad]. Revista Matices Tecnológicos, UNISANGIL, 12. 58-63.
Dueñas, J. (2020). Aplicación de técnicas de machine learning a la ciberseguridad: Aprendizaje supervisado para la detección de amenazas web mediante clasificación basada en árboles de decisión [Application of machine learning techniques to cybersecurity: Supervised learning for web threat detection using decision tree-based classification]. Universidad Oberta de Catalunya. http://hdl.handle.net/10609/118166
Flores, C. (2020). Inteligencia artificial, machine learning, deep learning aplicados a la ciberseguridad. INF-FCPN-PGI Revista PGI, (7), 11–13.
Hirare, Carolina. (2017). Ciberseguridad. Presentación del dossier [Cybersecurity. Introductionto Dossier]. URVIO Revista Latinoamericana de Estudios de Seguridad, (20), 8-15. https://doi.org/10.17141/urvio.20.2017.2859
Jiménez, C., & Ramírez, O. (2022). Propuesta de buenas prácticas de ciberseguridad para el uso de chatbots en el sector privado costarricense [Cybersecurity best practices proposal for the use of chatbots in the Costa Rican private sector]. Universidad Cenfotec. https://repositorio.ucenfotec.ac.cr/handle/123456789/xmlui/handle/123456789/349
León, D. A., Martínezq, J. G., Ardila, I. A., & Mosquera, D. J. (2022). Inteligencia artificial para el control de tráfico en redes de datos: Una Revisión [Artificial intelligence for traffic control in data networks: A Review]. Entre Ciencia e Ingeniería, 16(31), 17-24. Epub July 15, 2023.https://doi.org/10.31908/19098367.2655
Obregón-Martínez, W. V., & Morejón–López, G. E. (2024). Evaluación del desempeño de algoritmos de machine learning dentro de la IA para uso en la búsqueda de patrones de ciberataques y mitigación de su impacto [Performance evaluation of machine learning algorithms within AI for use in finding patterns of cyber-attacks and mitigating their impact]. Universidad Tecnológica de Israel. Tesis de maestría.
Portela, M. (2022). Panorama de la inteligencia artificial en el dominio de la ciberseguridad [Overview of artificial intelligence in the cybersecurity domain]. RUIDERAe: Revista de Unidades de Información, 19.
Quirumbay, D., Castillo-Yagual, C., & Coronel-Suárez, I. (2022). Una revisión del Aprendizaje profundo aplicado a la ciberseguridad [A review of Deep Learning applied to cybersecurity]. Revista Científica Y Tecnológica UPSE, 9(1), 57-65. https://doi.org/10.26423/rctu.v9i1.671
Zhang, Z., Ning, H., Shi, F., & et al. (2022). Artificial intelligence in cyber security: Research advances, challenges, and opportunities. Artificial Intelligence Review, 55(2), 1029–1053. https://doi.org/10.1007/s10462-021-09976-0
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Copyright: 2025 By the authors. This article is open access and distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license. https://creativecommons.org/licenses/by-n

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
CC BY-NC-SA : This license allows reusers to distribute, remix, adapt and build upon the material in any medium or format for non-commercial purposes only, and only if attribution is given to the creator. If you remix, adapt or build upon the material, you must license the modified material under identical terms.
OAI-PMH URL: https://rperspectivasinvestigativas.org/index.php/multidiscipinaria/oai