Review of MATLAB/Simulink Simulation Strategies for Energy Efficiency in Electrified Propulsion [Revisión de Estrategias de Simulación MATLAB/Simulink para Eficiencia Energética en Propulsión Electrificada]
DOI:
https://doi.org/10.62574/rmpi.v5iTecnologia.411Keywords:
energy efficiency, electrified propulsion, multiphysics modelling, (Source: UNESCO Thesaurus).Abstract
Optimising energy efficiency in electrified propulsion systems is a contemporary technological challenge where MATLAB-Simulink-Simscape is emerging as the standard platform for multiphysics modelling. This study conducted a systematic review following the PRISMA 2020 protocol to identify the most effective modelling and simulation strategies. Seven studies published between 2022 and 2024 were analysed, extracted from 1,881 initial records in the IEEE Xplore, Springer Link and Taylor & Francis databases. The results show a predominance of Simscape Electrical (100%), Driveline (86%) and Fluids (57%) libraries, implementing multiphysics hierarchical structures. The most effective strategies combine predictive control with parametric analysis, achieving energy improvements of 8-23%. Reinforcement learning emerges as promising with improvements of up to 18%. Component validation is essential, achieving accuracy <2% in energy consumption. It is concluded that early multiphysics integration and calibration based on experimental data significantly optimise energy efficiency in electrified propulsion systems.
Downloads
References
Ehsani, M., Gao, Y., & Emadi, A. (2023). Modern electric, hybrid electric, and fuel cell vehicles: Fundamentals, theory, and design. CRC Press. https://doi.org/10.1201/9781003288197
García-Sánchez, J. A., Jażdżewska, J., & Meier, O. (2023). Electric vehicle battery models in simulation environments: A comprehensive review. Journal of Energy Storage, 58, Article 106450. https://doi.org/10.1016/j.est.2022.106450
Guo, J., He, H., & Sun, C. (2023). Digital twin for electric vehicle powertrains: A review on modeling, simulation, and applications. IEEE Transactions on Vehicular Technology, 72(9), 9724–9739. https://doi.org/10.1109/TVT.2023.3271903
Hayes, J. G., & Thompson, K. (2023). Modeling and simulation of electrified powertrains: A comprehensive review. IEEE Transactions on Transportation Electrification, 9(1), 467–485. https://doi.org/10.1109/TTE.2022.3185492
Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2018). Metodología de la investigación: Las rutas cuantitativa, cualitativa y mixta. McGraw-Hill Interamericana. https://doi.org/10.17993/CcyLl.2018.15
Kang, D., Lim, O., & Jung, J. (2022). Simscape-based thermal management system modeling for battery electric vehicles: A comparison of cooling strategies. Applied Thermal Engineering, 210, Article 118359. https://doi.org/10.1016/j.applthermaleng.2022.118359
Kim, J., & Park, S. (2022). Energy management strategy for parallel hybrid electric vehicles using predictive terrain information. IEEE Transactions on Vehicular Technology, 71(5), 4731–4742. https://doi.org/10.1109/TVT.2022.3143257
Kumar, P., Chakraborty, S., & Banerjee, S. (2023). Model-based design approach for electric vehicle controls: From simulation to prototype. IEEE Access, 11, 57890–57905. https://doi.org/10.1109/ACCESS.2023.3287574
Li, W., Xia, Y., & Zhou, K. (2024). Reinforcement learning for energy optimization in electrified vehicles: Simulation results and real-world validation. IEEE Transactions on Control Systems Technology, 32(1), 214–228. https://doi.org/10.1109/TCST.2023.3245879
Liu, K., & Peng, H. (2022). Optimal control of electrified vehicles: Theory and applications. Springer. https://doi.org/10.1007/978-3-030-86431-2
Liu, X., Wang, R., Zhang, Y., & Sun, Z. (2024). Adaptive energy management for series-parallel hybrid electric vehicles based on driving pattern recognition and terrain information. Energy, 275, Article 127368. https://doi.org/10.1016/j.energy.2023.127368
Martínez, A., & Johnson, B. (2024). Thermal-electrical coupled modeling of battery electric vehicles under extreme conditions. Journal of Power Sources, 550, Article 232468. https://doi.org/10.1016/j.jpowsour.2023.232468
Miller, J. M., & Johnson, V. H. (2024). Validation methodologies for electrified vehicle simulation models: Current practices and future directions. SAE International Journal of Alternative Powertrains, 12(2), 213–237. https://doi.org/10.4271/05-12-02-0012
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., & Hoffmann, T. C. (2022). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, Article n71. https://doi.org/10.1136/bmj.n71
Rajamani, R. (2023). Vehicle dynamics and control (3rd ed.). Springer. https://doi.org/10.1007/978-3-030-90475-0
Rashid, M. I. M., Hassan, M. H., & Sulaiman, S. A. (2022). Multi-domain simulation and optimization of hybrid electric powertrains: A Simscape-based integrated approach. Energy Conversion and Management, 254, Article 115232. https://doi.org/10.1016/j.enconman.2022.115232
Thaler, S., & Watzenig, D. (2022). Automotive systems and software engineering: State of the art and future trends. Springer. https://doi.org/10.1007/978-3-030-12157-0
Wang, J., Zhang, L., & Chen, F. (2024). Advanced modeling techniques for electric vehicle powertrains using Matlab/Simulink. Transportation Research Part D: Transport and Environment, 120, Article 103793. https://doi.org/10.1016/j.trd.2023.103793
Zhang, P., Yan, F., & Du, C. (2022). A unified framework for energy management in hybrid and electric vehicles using MATLAB/Simulink. Applied Energy, 328, Article 120090. https://doi.org/10.1016/j.apenergy.2022.120090
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mario Fernando Mario Fernando Vargas-Brito, Esteban Fernando López-Espinel, Edwin Javier Morejón-Sánchez, Antonio Gabriel Castillo-Medina

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
CC BY-NC-SA : This license allows reusers to distribute, remix, adapt and build upon the material in any medium or format for non-commercial purposes only, and only if attribution is given to the creator. If you remix, adapt or build upon the material, you must license the modified material under identical terms.
OAI-PMH URL: https://rperspectivasinvestigativas.org/index.php/multidiscipinaria/oai