Review of MATLAB/Simulink Simulation Strategies for Energy Efficiency in Electrified Propulsion [Revisión de Estrategias de Simulación MATLAB/Simulink para Eficiencia Energética en Propulsión Electrificada]

Authors

  • Mario Fernando Mario Fernando Vargas-Brito Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador
  • Esteban Fernando López-Espinel Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador
  • Edwin Javier Morejón-Sánchez Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador
  • Antonio Gabriel Castillo-Medina Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

DOI:

https://doi.org/10.62574/rmpi.v5iTecnologia.411

Keywords:

energy efficiency, electrified propulsion, multiphysics modelling, (Source: UNESCO Thesaurus).

Abstract

Optimising energy efficiency in electrified propulsion systems is a contemporary technological challenge where MATLAB-Simulink-Simscape is emerging as the standard platform for multiphysics modelling. This study conducted a systematic review following the PRISMA 2020 protocol to identify the most effective modelling and simulation strategies. Seven studies published between 2022 and 2024 were analysed, extracted from 1,881 initial records in the IEEE Xplore, Springer Link and Taylor & Francis databases. The results show a predominance of Simscape Electrical (100%), Driveline (86%) and Fluids (57%) libraries, implementing multiphysics hierarchical structures. The most effective strategies combine predictive control with parametric analysis, achieving energy improvements of 8-23%. Reinforcement learning emerges as promising with improvements of up to 18%. Component validation is essential, achieving accuracy <2% in energy consumption. It is concluded that early multiphysics integration and calibration based on experimental data significantly optimise energy efficiency in electrified propulsion systems.

Downloads

Download data is not yet available.

Author Biographies

Mario Fernando Mario Fernando Vargas-Brito, Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

Esteban Fernando López-Espinel, Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

Edwin Javier Morejón-Sánchez, Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

Antonio Gabriel Castillo-Medina, Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

References

Ehsani, M., Gao, Y., & Emadi, A. (2023). Modern electric, hybrid electric, and fuel cell vehicles: Fundamentals, theory, and design. CRC Press. https://doi.org/10.1201/9781003288197

García-Sánchez, J. A., Jażdżewska, J., & Meier, O. (2023). Electric vehicle battery models in simulation environments: A comprehensive review. Journal of Energy Storage, 58, Article 106450. https://doi.org/10.1016/j.est.2022.106450

Guo, J., He, H., & Sun, C. (2023). Digital twin for electric vehicle powertrains: A review on modeling, simulation, and applications. IEEE Transactions on Vehicular Technology, 72(9), 9724–9739. https://doi.org/10.1109/TVT.2023.3271903

Hayes, J. G., & Thompson, K. (2023). Modeling and simulation of electrified powertrains: A comprehensive review. IEEE Transactions on Transportation Electrification, 9(1), 467–485. https://doi.org/10.1109/TTE.2022.3185492

Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2018). Metodología de la investigación: Las rutas cuantitativa, cualitativa y mixta. McGraw-Hill Interamericana. https://doi.org/10.17993/CcyLl.2018.15

Kang, D., Lim, O., & Jung, J. (2022). Simscape-based thermal management system modeling for battery electric vehicles: A comparison of cooling strategies. Applied Thermal Engineering, 210, Article 118359. https://doi.org/10.1016/j.applthermaleng.2022.118359

Kim, J., & Park, S. (2022). Energy management strategy for parallel hybrid electric vehicles using predictive terrain information. IEEE Transactions on Vehicular Technology, 71(5), 4731–4742. https://doi.org/10.1109/TVT.2022.3143257

Kumar, P., Chakraborty, S., & Banerjee, S. (2023). Model-based design approach for electric vehicle controls: From simulation to prototype. IEEE Access, 11, 57890–57905. https://doi.org/10.1109/ACCESS.2023.3287574

Li, W., Xia, Y., & Zhou, K. (2024). Reinforcement learning for energy optimization in electrified vehicles: Simulation results and real-world validation. IEEE Transactions on Control Systems Technology, 32(1), 214–228. https://doi.org/10.1109/TCST.2023.3245879

Liu, K., & Peng, H. (2022). Optimal control of electrified vehicles: Theory and applications. Springer. https://doi.org/10.1007/978-3-030-86431-2

Liu, X., Wang, R., Zhang, Y., & Sun, Z. (2024). Adaptive energy management for series-parallel hybrid electric vehicles based on driving pattern recognition and terrain information. Energy, 275, Article 127368. https://doi.org/10.1016/j.energy.2023.127368

Martínez, A., & Johnson, B. (2024). Thermal-electrical coupled modeling of battery electric vehicles under extreme conditions. Journal of Power Sources, 550, Article 232468. https://doi.org/10.1016/j.jpowsour.2023.232468

Miller, J. M., & Johnson, V. H. (2024). Validation methodologies for electrified vehicle simulation models: Current practices and future directions. SAE International Journal of Alternative Powertrains, 12(2), 213–237. https://doi.org/10.4271/05-12-02-0012

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., & Hoffmann, T. C. (2022). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, Article n71. https://doi.org/10.1136/bmj.n71

Rajamani, R. (2023). Vehicle dynamics and control (3rd ed.). Springer. https://doi.org/10.1007/978-3-030-90475-0

Rashid, M. I. M., Hassan, M. H., & Sulaiman, S. A. (2022). Multi-domain simulation and optimization of hybrid electric powertrains: A Simscape-based integrated approach. Energy Conversion and Management, 254, Article 115232. https://doi.org/10.1016/j.enconman.2022.115232

Thaler, S., & Watzenig, D. (2022). Automotive systems and software engineering: State of the art and future trends. Springer. https://doi.org/10.1007/978-3-030-12157-0

Wang, J., Zhang, L., & Chen, F. (2024). Advanced modeling techniques for electric vehicle powertrains using Matlab/Simulink. Transportation Research Part D: Transport and Environment, 120, Article 103793. https://doi.org/10.1016/j.trd.2023.103793

Zhang, P., Yan, F., & Du, C. (2022). A unified framework for energy management in hybrid and electric vehicles using MATLAB/Simulink. Applied Energy, 328, Article 120090. https://doi.org/10.1016/j.apenergy.2022.120090

Published

2025-08-08

How to Cite

Mario Fernando Vargas-Brito, M. F., López-Espinel, E. F., Morejón-Sánchez, E. J., & Castillo-Medina, A. G. (2025). Review of MATLAB/Simulink Simulation Strategies for Energy Efficiency in Electrified Propulsion [Revisión de Estrategias de Simulación MATLAB/Simulink para Eficiencia Energética en Propulsión Electrificada]. Multidisciplinary Journal Investigative Perspectives/Revista Multidisciplinaria Perspectivas Investigativas, 5(Tecnologia), 69–79. https://doi.org/10.62574/rmpi.v5iTecnologia.411